Search results for "Thermodynamic stability"

showing 6 items of 6 documents

A new simple approach to evaluate pedogenic clay transformation in a Vertic Calcisol

2006

The aim of this study is to characterize the pedogenic clay minerals by using simple approach: Mixing mineralogical and geochemical findings. The fine clay fractions (< 0.1 μm) of a Vertic Cambisol profile were studied by means of X-ray diffraction (XRD), infrared spectroscopy (FTIR) and cation exchange capacity (CEC). Qualitative and quantitative mineralogical compositions of the clay mixture were determined. Moreover, chemical equilibria and thermodynamic stabilities of minerals (calcite, gypsum, kaolinite, smectites and illites) were studied using results of ionic activities obtained from total concentration of various aqueous species in water extracts from soil-saturated pastes. XRD ana…

CalciteWorld Reference BaseGypsumAqueous solutionSaturated paste extractGeochemistryMineralogyCalcisolengineering.materialQ/ K ratioThermodynamic stabilitychemistry.chemical_compoundPedogenesischemistryGeochemistry and PetrologySettore AGR/14 - PedologiaengineeringKaoliniteSoil horizonEconomic GeologyClay minerals
researchProduct

Ultralow thermal conductivity in 1D and 2D imidazolium-based lead halide perovskites

2021

Low-dimensional hybrid organic–inorganic metal halide perovskites are rapidly emerging as a fascinating sub-class of the three-dimensional parent structures, thanks to their appealing charge and thermal transport properties, paired to better chemical and thermal stabilities. Extensive investigations of the thermal behavior in these systems are of paramount relevance to understand their optoelectronic and thermoelectric applications. Herein, we present a complete thermophysical characterization of imidazolium lead iodide, (IMI)PbI3, a 1D pseudo-perovskite with chains of face-sharing octahedra, and histammonium lead iodide, (HIST)PbI4, a 2D layered perovskite with corner-sharing octahedra. Up…

Metal halideLead compoundMaterials sciencePhysics and Astronomy (miscellaneous)HalidePelletizingIodine compoundThermal diffusivityPerovskiteThermodynamic stabilityThermal expansionPowder metalHybrid systemThermal conductivityChemical physicsLayered semiconductorThermoelectric effectThermalorganic-inorganic materialThermal stabilityThermal expansionPerovskite (structure)
researchProduct

Acetylated nucleosome assembly on telomeric DNAs

2003

Abstract The role of histone N-terminal domains on the thermodynamic stability of nucleosomes assembled on several different telomeric DNAs as well as on ‘average’ sequence DNA and on strong nucleosome positioning sequences, has been studied by competitive reconstitution. We find that histone tails hyperacetylation favors nucleosome formation, in a similar extent for all the examined sequences. On the contrary, removal of histone terminal domains by selective trypsinization causes a decrease of nucleosome stability which is smaller for telomeres compared to the other sequences examined, suggesting that telomeric sequences have only minor interactions with histone tails. Micrococcal nuclease…

Nucleosome assemblyBiophysicsBinding CompetitiveBiochemistryHistonesKluyveromycesHistone H1Histone methylationAnimalsHumansMicrococcal NucleaseNucleosomeHistone codeHistone octamerChemistrynucleosomeChlamydomonasOrganic Chemistryhistone acetylationhistone acetylation; nucleosome; nucleosome positioning; telomeres; thermodynamic stabilityAcetylationDNATelomeretelomeresLinker DNANucleosomesProtein Structure TertiaryBiochemistryChromatosomeBiophysicsthermodynamic stabilityThermodynamicsnucleosome positioningBiophysical Chemistry
researchProduct

Biogenic Selenium Nanoparticles: A Fine Characterization to Unveil Their Thermodynamic Stability

2021

Among the plethora of available metal(loid) nanomaterials (NMs), those containing selenium are interesting from an applicative perspective, due to their high biocompatibility. Microorganisms capable of coping with toxic Se-oxyanions generate mostly Se nanoparticles (SeNPs), representing an ideal and green alternative over the chemogenic synthesis to obtain thermodynamically stable NMs. However, their structural characterization, in terms of biomolecules and interactions stabilizing the biogenic colloidal solution, is still a black hole that impairs the exploitation of biogenic SeNP full potential. Here, spherical and thermodynamically stable SeNPs were produced by a metal(loid) tolerant Mic…

BiocompatibilityGeneral Chemical EngineeringNanoparticle02 engineering and technologyDFT calculationsArticleMicrococcusNanomaterials03 medical and health sciencesAdsorptionbiogenic selenium nanoparticlesMoleculeGeneral Materials ScienceFourier transform infrared spectroscopyQD1-999030304 developmental biologymultivariate statistical analysischemistry.chemical_classification0303 health sciencesBiomolecule021001 nanoscience & nanotechnologyChemistryFTIR spectroscopychemistryChemical engineering<i>Micrococcus</i>thermodynamic stabilityChemical stabilityselenium nanorods0210 nano-technologyNanomaterials
researchProduct

Influence of bacterial physiology on processing of selenite, biogenesis of nanomaterials and their thermodynamic stability

2019

We explored how Ochrobactrum sp. MPV1 can convert up to 2.5 mM selenite within 120 h, surviving the challenge posed by high oxyanion concentrations. The data show that thiol-based biotic chemical reaction(s) occur upon bacterial exposure to low selenite concentrations, whereas enzymatic systems account for oxyanion removal when 2 mM oxyanion is exceeded. The selenite bioprocessing produces selenium nanomaterials, whose size and morphology depend on the bacterial physiology. Selenium nanoparticles were always produced by MPV1 cells, featuring an average diameter ranging between 90 and 140 nm, which we conclude constitutes the thermodynamic stability range for these nanostructures. Alternativ…

biogenic nanomaterials; selenium nanomaterials; selenite; selenium nanoparticles; selenium nanorods; Ochrobactrum; thermodynamic stability; electrosteric stabilizationPharmaceutical ScienceNanoparticlePhysiologyOxyanion02 engineering and technologySelenious AcidAnalytical ChemistryNanomaterialschemistry.chemical_compoundNanoparticleDrug Discoverychemistry.chemical_classification0303 health sciencesNanotubeselectrosteric stabilization021001 nanoscience & nanotechnologySelenium nanomaterialSelenium nanoparticleChemistry (miscellaneous)Molecular MedicineBiogenic nanomaterialNanorod0210 nano-technologybiogenic nanomaterialsselenium nanomaterialschemistry.chemical_elementOchrobactrumArticlelcsh:QD241-44103 medical and health scienceslcsh:Organic chemistryAmphiphileselenium nanoparticlesPhysical and Theoretical ChemistryParticle SizeSelenium nanorod030304 developmental biologyBiomoleculeOrganic ChemistryNanotube<i>Ochrobactrum</i>chemistry13. Climate actionNanoparticlesthermodynamic stabilityChemical stabilityseleniteselenium nanorodsSelenium
researchProduct

Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes

2012

Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittanc…

High transmittanceDiffusionrf-Magnetron sputteringElectro-optical characteristicGlass substrateTransparent conductive oxide RF magnetron sputtering Optical properties Electrical resistivity Al-doped zinc oxide Silver MultilayersSettore ING-INF/01 - ElettronicaSUBSTRATE-TEMPERATUREAg diffusionAl-doped ZnOLow resistanceMultilayerZNOMaterials ChemistryVisible spectral rangeMULTILAYER FILMSAl-doped zinc oxideOptical propertiesMetals and AlloysAZO filmElectrical resistivityOPTICAL-PROPERTIESOXIDE-FILMSSurfaces and InterfacesZinc oxide AluminumRadio frequency magnetron sputteringSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptical and electrical propertieElectrodeOptoelectronicsFilm preparationLayer (electronics)Magnetron sputteringUltra-thinRF magnetron sputteringMaterials scienceSilverThermodynamic stabilityOpticsTransparent conductive oxideElectrical resistivity and conductivityThermal stabilityElectrical conductorTransparent conducting filmRoom temperatureThin film solar cellbusiness.industryTransparent conductiveOptical propertieSilver layerHigh transmittanceMultilayersMulti-layer-coatingZnO Electric conductivityMeasured propertiebusinessSubstrate
researchProduct